Ich hatte mal wieder eine Idee. Dazu habe ich mir das eher unscheinbar aussehende Newtonfraktal herausgesucht.

Die Formel lautet übrigens:

p(z) = z^4 -  1 = 0 , z \in \mathbb{C}

Das Newtonfraktal ist eigentlich eine zweidimensionale grafische Darstellung der näherungsweise ermittelten Nullstellen nichtlinearer Gleichungssysteme im Bereich der komplexen Zahlen.

Dabei wird ein Startwert solange iteriert, bis feststeht, ob der Startwert zur Nullstelle konvergiert oder nicht. Je schneller er zu einer Nullstelle konvergiert, umso heller wird der Pixel in der jeweiligen Farbe der Nullstelle eingefärbt. Divergiert er, bleibt der Pixel schwarz.

Das Ermitteln der Nullstellen erfolgt mit Hilfe des Newton-Verfahrens oder dem sogenannten Tangentennäherungsverfahren.

In diesem PDF-Dokument werden die mathematischen Grundlagen wie Vektoren und Matrizen, das Newton-Verfahren sowie die komplexen Zahlen detailliert erklärt, welche zum Errechnen der Nullstellen erforderlich sind.

Ihr könnt Euch monatlich an verschiedene Newtonfraktale erfreuen. Viel Spaß!

Weiterlesen